如图,△ABC中,AB=AC,D、E、F分别为AB、BC、CA上的点,且BD=CE,∠DEF=∠B. 求证:△DEF是等腰三角形.

问题描述:

如图,△ABC中,AB=AC,D、E、F分别为AB、BC、CA上的点,且BD=CE,∠DEF=∠B.
求证:△DEF是等腰三角形.

证明:∵∠DEC=∠B+∠BDE=∠CEF+∠DEF,∠DEF=∠B,
∴∠CEF=∠BDE.
∵AB=AC,
∴∠C=∠B.
在△BDE和△CEF中,

∠B=∠C
BD=CE
∠BDE=∠CEF

∴△BDE≌△CEF(ASA).
∴DE=FE.
所以△DEF是等腰三角形.