已知数列1,1+1/2,1+1/3+2/3,1+1/4+2/4+3/4,…,1+1/2009+2/2009+…+2008/2009,…

问题描述:

已知数列1,1+1/2,1+1/3+2/3,1+1/4+2/4+3/4,…,1+1/2009+2/2009+…+2008/2009,…
1.写出它的通项an,并证明数列{an}是等差数列
2.设 bn=1/an*an-1,求数列{bn}的前n项和

1.写出它的通项an,并证明数列{an}是等差数列
an=1+1/n+2/n+.+(n-1)/n=1/n+2/n+.+n/n=(1+n)/2;
a(n+1)-an
=((n+2)/2-(n+1)/2=1/2
2.设 bn=1/an*an-1,求数列{bn}的前n项和
这个式子书写不规范,我只能猜.
b1=1/(a1*a0),不存在.
b2=1/(a2*a1)=4/[(2+1)*2]=4*(1/2-1/3)
''''''
bn=1/(an*an-1)=4/[(n+1)*n]=4*[1/n-1/(n+1)]
数列{bn}的前n项和
=4*(1/2-1/3)+4*(1/3-1/4)+.+4*[1/n-1/(n+1)]
=4*[1/2-1/(n+1) ]