1+1\2+(1\3+2\3)+(1\4+2\4+3\4)+……(1\50+2\50+……49\50)=?
问题描述:
1+1\2+(1\3+2\3)+(1\4+2\4+3\4)+……(1\50+2\50+……49\50)=?
答
通式:1\n+2\n+3\n+.+(n-1)\n=(n-1)\2 @
所以 原式=1+(1\2+2\2+3\2+.+49\2)@
=1+612.5=613.5
有@标志的分子式子是:(首项+尾项)*项数\2