数学数列1题+函数1题 求助我的分不多 但是我还是会加分的 希望好心人帮助我 告诉我具体怎么做 谢谢大家1.若函数f(n)=2+1/1+1/(3+2)+1/(4+3)+.+1/(n+n-1),求这个函数的最小值 (n是大于等于2的)2.设常数a属于R,已知函数f(x)=(x+a)/(x-a) + (x-1)/(x+1)+21)设a= 0,求f(x)的值域中不能取到的整数集合2)设a属于(0.5,2),根据a的不值,讨论并求出函数f(x)的值域中不能取到的整数集合补充: 第一题中 an=n 首相是1 d=1

问题描述:

数学数列1题+函数1题 求助
我的分不多 但是我还是会加分的 希望好心人帮助我 告诉我具体怎么做 谢谢大家
1.若函数f(n)=2+1/1+1/(3+2)+1/(4+3)+.+1/(n+n-1),求这个函数的最小值 (n是大于等于2的)
2.设常数a属于R,已知函数f(x)=(x+a)/(x-a) + (x-1)/(x+1)+2
1)设a= 0,求f(x)的值域中不能取到的整数集合
2)设a属于(0.5,2),根据a的不值,讨论并求出函数f(x)的值域中不能取到的整数集合
补充: 第一题中 an=n 首相是1 d=1

1.f(n)-f(n-1)=1/(2+1)+1/(3+2)+1/(4+3)+.+1/(n+n-1)-[1/(2+1)+1/(3+2)+1/(4+3)+.+1/(n-1+n-2)]=1/(n+n-1)>0所以函数f(n)单调增,因为n≥2所以当n=2时,这个函数取得最小值1/3. 2.a=0,f(x)=(x-1)/(x+1)+3=1-2/(x...