lim(1/(x^2-x))*sin(π/x)x趋向于0

问题描述:

lim(1/(x^2-x))*sin(π/x)x趋向于0
请详解

答:
(x→0)lim[sin(x/π)/(x^2-x)] 属于0-0型,应用洛必达法则:
=(x→0)lim[(1/π)cos(x/π)/(2x-1)]
=(1/π)*(cos0°)/(-1)
=-1/π不对哦,sin(π/x)是有界。再问你lim(1/(x^2-x))x趋向于0等于请你注明哪个是分母,哪个是分子........分子sin(π/x)分母1/(x^2-x)(x→0)lim[sin(π/x)/(x^2-x)] 因为:-1