设a为实数,函数f(x)=x^2+|x-a|+1,x∈R (1)讨论f(x)的奇偶性;(2)若x≥a,求f(x)的最小值

问题描述:

设a为实数,函数f(x)=x^2+|x-a|+1,x∈R (1)讨论f(x)的奇偶性;(2)若x≥a,求f(x)的最小值
a为什么要和1/2作比较还有那个单调区间是怎么求的

设a为实数,函数f(x)=x²+|x-a|+1,x∈R (1)讨论f(x)的奇偶性;(2)若x≥a,求f(x)的最小值(1)当a=0时f(x)=x²+|x|+1是偶函数;当a≠0时f(x)=x²+|x-a|+1是非奇非偶的函数.(2)∵x≧a...