已知实数a、b、x、y满足a+b=x+y=2,ax+by=5,则(a2+b2)xy+ab(x2+y2)=_.

问题描述:

已知实数a、b、x、y满足a+b=x+y=2,ax+by=5,则(a2+b2)xy+ab(x2+y2)=______.

∵a+b=x+y=2,
∴(a+b)(x+y)=ax+bx+ay+by=2×2=4,
∵ax+by=5,
∴ay+bx=4-5=-1,
∴(a2+b2)xy+ab(x2+y2)=a2xy+b2xy+abx2+aby2=by(bx+ay)+ax(bx+ay)=(ax+by)(ay+bx)
=5×(-1)
=-5.
故填-5.