若x,y均为实数,且a=x平方-2y+1,b=y平方-2x+2,用反证法证明:a,b中至少有一个大于0

问题描述:

若x,y均为实数,且a=x平方-2y+1,b=y平方-2x+2,用反证法证明:a,b中至少有一个大于0

假设a,b均小于等于0,那么a+b≤0
x平方-2y+1≤0且
y平方-2x+2≤0
相加得x^2-2x+1+y^2-2y+2=(x-1)^2+(y-1)^2+1≥1,这与假设矛盾,所以假设不成立,换言之a,b中至少有一个大于0