已知函数f (x)=-x^3+3x^2+9x+a 若f x 在区间[-2,2]上的最大值为20,求该区间上的最小值

问题描述:

已知函数f (x)=-x^3+3x^2+9x+a 若f x 在区间[-2,2]上的最大值为20,求该区间上的最小值
为什么最小值是f(-1),而不是f(-2)

f'(x)=-3x^2+6x+9=0
解得x1=3 ;x2=-1
函数减区间为(-∞,-1),(3,+∞)
增区间为(-1,3)
在区间[-2,2]上f(-1)是极小值点
f(-2)>f(-1)
显然最小值是f(-1),而不是f(-2)