如图,圆O是△ABC的外接圆,且弧AB=弧AC,点D在BC上运动,过点D做DE‖BC,DE交AB的延长线与点E,连结AD、BD.
问题描述:
如图,圆O是△ABC的外接圆,且弧AB=弧AC,点D在BC上运动,过点D做DE‖BC,DE交AB的延长线与点E,连结AD、BD.
(1)请判断∠ADB与∠E之间的大小关系,并说明理由;
(2)当AB=5,BC=6时,求圆O的半径
答
两角相等,弧AB=弧AC,所以,AB=AC,所以,角 ABC=ACB
角ACB=ADB
DE平行BC,ABC=角E
所以 角ADB=角E
所以D点位置和角E大学无关,当D位于弧BC中点时,AD是直径,ED是切线,连接BD,设直径x
sinBAD=3/5=√(x^2-5^2)/x
所以x=25/4
半径 25/8