已知定义域为R的函数f(x)为奇函数,且满足f(x+2)=-f(x),当x∈[0,1]时,f(x)=2x-1,则f(log1/224)=_.

问题描述:

已知定义域为R的函数f(x)为奇函数,且满足f(x+2)=-f(x),当x∈[0,1]时,f(x)=2x-1,则f(log

1
2
24)=______.

由题意可得:f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),故f(x)的周期为4故f(log1224)=f(-log224)=f(-log2(8×3))=f(-3-log23)=f(4-3-log23)=f(log223)=-f(-log223)=-f(log232),而log232∈[0,1]...