在△ABC中,角A、B、C的对边分别为a、b、c,已知向量m=(cosA,cosB)、n=(2c+b,a),且m⊥n.(1)求角A的大小;(2)若a=4,求△ABC面积的最大值.

问题描述:

在△ABC中,角A、B、C的对边分别为a、b、c,已知向量

m
=(cosA,cosB)、
n
=(2c+b,a),且
m
n

(1)求角A的大小;
(2)若a=4,求△ABC面积的最大值.

(1)∵

m
n
m
n
=(cosA,cosB)•(2c+b,a)=(2c+b)cosA+acosB=0

由正弦定理可得(2sinC+sinB)cosA+sinAcosB=0,
即2sinCcosA+(sinBcosA+sinAcosB)=0,
整理可得sinC+2sinCcosA=0.
∵0<C<π,sinC>0,
cosA=-
1
2

A=
3

(2)由余弦定理,a2=b2+c2-2bccosA,
即16=b2+c2+bc≥3bc,
bc≤
16
3

故△ABC的面积为S=
1
2
bcsinA=
3
4
bc≤
4
3
3

当且仅当b=c=
4
3
3
时,△ABC面积取得最大值
4
3
3