正方形ABCD中,点F在AD上,点E在AB上,AE=EB,AF=1/4AD.求证:CE⊥EF
问题描述:
正方形ABCD中,点F在AD上,点E在AB上,AE=EB,AF=1/4AD.求证:CE⊥EF
连接CE,EF ( 勾股定理逆定理)
答
法一:由AF^2+AE^2=EF^2,BE^2+BC^2=EC^2,将AF=1/4AD,AE=BE=1/2AD,BC=AD代入,则EF^2=5/16AD^2,EC^2=5/4AD^2,故EF^2+EC^2=25/16AD^2.
由FC^2=FD^2+AD^2,将FD=3/4AD代入,FC^2=25/16AD^2
所以EF^2+EC^2=FC^2,角FEC=90度.CE⊥EF
法二:AF:EB=AE:BC=1:2,角A=角B=90度,因此三角形FAE与三角形EBC相似,角AEF=角BCE.由角BCE+角CEB=90度,所以角AEF+角CEB=90度,所以角CEF=90度.CE⊥EF