如图,已知△ABC是等边三角形,D是边AC的中点,连接BD,EC⊥BC于点C,CE=BD.求证:△ADE是等边三角形.

问题描述:

如图,已知△ABC是等边三角形,D是边AC的中点,连接BD,EC⊥BC于点C,CE=BD.求证:△ADE是等边三角形.

证明:∵△ABC是等边三角形,D为边AC的中点,∴BD⊥AC,即∠ADB=90°,∵EC⊥BC,∴∠BEC=90°,∴∠DBC+∠DCB=90°,∠ECD+∠BCD=90°,∴∠ACE=∠DBC,∵在△CBD和△ACE中BD=CE∠DBC=∠ACEBC=AC∴△CBD≌Rt△AC...