已知,在三角形ABC中,角BAC等于90度,AB等于AC,点D是BC上任意一点,求BD平方+CD平方=2AD平方

问题描述:

已知,在三角形ABC中,角BAC等于90度,AB等于AC,点D是BC上任意一点,求BD平方+CD平方=2AD平方

△ABC中:∠A=90°,AB=AC,
点D是BC上任意一点,过A作AE⊥BC于E,
设BE=EC=AE=1,DE=x,∴BE=1-x,DE=1+x,
(1)BD²+CD²=(1-x)²+(1+x)²
=1-2x+x²+1+2x+x²
=2+2x²
(2)AD²=AE²+DE²,
∴AD²=1²+x²
2AD²=2+2x².
由(1)和(2)得:
BD²+CD²=2AD²正确.