由数列的递推公式求数列的通项公式.
问题描述:
由数列的递推公式求数列的通项公式.
已知a1=3 ,an=[a(n-1)]^2(n≥2),则an的通项公式为?
答
An=[A(n-1)]^2
lnAn=ln[A(n-1)]^2=2lnA(n-1)
lnA1=ln3
{lnAn}是以ln3为首项,2为公比的等比数列
lnAn=ln3×2^(n-1)=ln3^[2^(n-1)]
An=3^[2^(n-1)]
特别提醒一下3^[2^(n-1)]不等于9^(n-1)