已知椭圆x^2/4+y^2=1,过左焦点F1的直线交椭圆于A、B点,求AB中点N的轨迹方程
问题描述:
已知椭圆x^2/4+y^2=1,过左焦点F1的直线交椭圆于A、B点,求AB中点N的轨迹方程
答
设A(x1,y1)、B(x2,y2),N(x,y),则x=(x1+x2)/2,y=(y1+y2)/2.(1)x1^2/4+y1^2=1x2^2/4+y2^2=1相减得到:(x1^2-x2^2)/4+(y1^2-y2^2)=0,即(x1-x2)(x1+x2)/4+(y1-y2)(y1+y2)=0两边同除(x1-x2),将(1)式代入,化简:...