已知{an}是公差不为零的等差数列{bn}为等比数列,满足b1=a1^2,b2=a2^2,b3=a3^2

问题描述:

已知{an}是公差不为零的等差数列{bn}为等比数列,满足b1=a1^2,b2=a2^2,b3=a3^2
求{bn}公比q的值
(n,1,2,3均为下标)

令{an}公差为d,由b2^2=b1*b3得:
a2^4=a1^2*a3^2
两边开方得:
a2^2=a1*a3或a2^2=-a1*a3
当a2^2=a1*a3时,有:
    (a1+d)^2=a1(a1+2d)
     化简得d^2=0,即d=0与公差不为零相矛盾,无解.
 2.当a2^2=-a1*a3时,有:
    (a1+d)^2=-a1(a1+2d)
     化简得2a1^2+4a1d+d^2=0
   解之得a1=(-1+√2/2)d  或 a1=(-1-√2/2)d
 ①若a1=(-1+√2/2)d ,则:
   q=a2^2/a1^2=(a1+d)^2/a1^2
     =[(-1+√2/2)d+d]^2/[(-1+√2/2)d ]^2
     =3+2√2
   ②若a1=(-1-√2/2)d ,则:
   q=a2^2/a1^2=(a1+d)^2/a1^2
     =[(-1-√2/2)d+d]^2/[(-1-√2/2)d ]^2
     =3-2√2
故{bn}公比q的值为3+2√2或3-2√2