已知x,y为正实数,且满足2x2+8y2+xy=2,则x+2y的最大值是 _ .
问题描述:
已知x,y为正实数,且满足2x2+8y2+xy=2,则x+2y的最大值是 ___ .
答
令x+2y=t,则x=t-2y,方程等价为2(t-2y)2+(t-2y)y+8y2=2,即14y2-7ty+2t2-2=0,要使14y2-7ty+2t2-2=0有解,则△=(-7t)2-4×14×(2t2-2)≥0,--7t14>0,2t2-214>0.即63t2≤56×2,t>1.∴t2≤169,t>1即...