利用极限存在准则证明:limn趋向于无穷,n【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】=1

问题描述:

利用极限存在准则证明:limn趋向于无穷,n【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】=1

夹逼准则n^2/(n^2+nπ)>n【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】>n^2/(n^2+π)
n^2/(n^2+nπ)=n^2/(n^2+π)=1(当n趋向∞)

迫敛准则
设 u(n) =n【1/(n^2+π)+1/(n^2+2π)+ ... +1/(n^2+nπ)】
n * n /(n^2+nπ) lim n->∞ n^2 /(n^2+nπ) = lim n->∞ n^2 / (n^2+π) = 1
lim n->∞ u(n)=1

证明:limn【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】limn【(1/n^2+nπ)+(1/n^2+nπ)+.(1/n^2+nπ)】 =limn(n/(n^2+nπ) =limn/n+π) =1所以limn【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+n...

lim n【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】
=lim 1/(n+π/n)+1/(n+2π/n)+...+1/(n+π)】
=lim n*1/n
=1