已知数列{an}中,a1=1,前n项和为Sn,且点P(an,an+1)(n∈N*)在直线x-y+1=0上,则1/S1+1/S2+1/S3+…+1/Sn=_.
问题描述:
已知数列{an}中,a1=1,前n项和为Sn,且点P(an,an+1)(n∈N*)在直线x-y+1=0上,则
+1 S1
+1 S2
+…+1 S3
=______. 1 Sn
答
∵点P(an,an+1)(n∈N*)在直线x-y+1=0上,
∴an+1-an=1,
∴数列{an}是等差数列,
∵a1=1,
∴sn=
,
n2+n 2
∴
=1 sn
,2 n(n+1)
∴
+1 S1
+1 S2
+…+1 S3
=2(1-1 Sn
+1 2
-…-1 2
)=1 n+1
,2n n+1
故答案为
.2n n+1