定义在R+上的函数f(x),对于任意的m,n属于R+,都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)1

问题描述:

定义在R+上的函数f(x),对于任意的m,n属于R+,都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)1

(1) f(1*1)=f(1)+f(1)
f(1)=2f(1)
f(1)=0所以1是函数的零点
(2) 因为f(mn)=f(m)+f(n)
设n>1,m属于R+,所以mn>m
f(mn)-f(m)=f(m)+f(n)-f(m)
=f(n)