已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,求动圆圆心M的轨迹方程.
问题描述:
已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,求动圆圆心M的轨迹方程.
答
设动圆圆心M(x,y),半径为r,
∵圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,
∴|MC1|=r+
,|MC2|=r-
2
,
2
∴|MC1|-|MC2|=2
<8,
2
由双曲线的定义,可得a=
,c=4;则b2=c2-a2=14;
2
∴点M的轨迹是以点C1,C2为焦点的双曲线的一支,
∴动圆圆心M的轨迹方程:
-x2 2
=1(x≥y2 14
).
2