设a,b,c为三角形ABC的三边,且(c-b)x2+2(b-a)x+a-b=0,有两个相等的实数根,求证三角形ABC为等腰三角形.
问题描述:
设a,b,c为三角形ABC的三边,且(c-b)x2+2(b-a)x+a-b=0,有两个相等的实数根,求证三角形ABC为等腰三角形.
答
因为有两个相等的实数根,所以Δ=0
Δ=4(b-a)^2-4*(c-b)*(a-b)
=4(b-a)*(b-a+c-b)
=4(b-a)(c-a)
=0
所以
a=b或者c=a
因此
这个三角形是等腰Δ