若A、B、C是△ABC的三边,且方程(a+b)x²-2cx+(a-b)=0有两个相等实数根,试判断三角形ABC的形状.
问题描述:
若A、B、C是△ABC的三边,且方程(a+b)x²-2cx+(a-b)=0有两个相等实数根,试判断三角形ABC的形状.
答
方程有两个相等实数根,则(2c)^2-4(a+b)(a-b)=0
解得c^2=a^2-b^2,即c^2+b^2=a^2.三角形ABC为直角三角形,∠A为直角.“^”是什么意思?c^2表示c的平方,在程序语言里面都这么写的,平方符号打不出来,只好这样了。