在三角形ABC中,角B=60,AD,CE,分别平分角BAC,角ACB且交于F,求证AC=AE+CD
问题描述:
在三角形ABC中,角B=60,AD,CE,分别平分角BAC,角ACB且交于F,求证AC=AE+CD
答
在AC上取AG=AE,连接FG
AD平分∠BAC
∠CAF=1/2∠BAC
∠ACF=1/2∠ACB
∠AFC=180-(∠CAF+∠ACF)=180-1/2(∠BAC+∠ACB)=180-1/2(180-∠B)=120
△AEF≌△AGF
∠AFE=∠AFG
∠AFE=180-120=60
∠CFG=120-∠AFG=60
∠DFC=∠CFG=60
△CDF≌△CGF
CD=CG
AC=AG+CG=AE+CD