已知等差数列{an}公差不为0,且a1,a3,a9成等比数列,则a1+a3+a9/a2+a4+a10等于多少?

问题描述:

已知等差数列{an}公差不为0,且a1,a3,a9成等比数列,则a1+a3+a9/a2+a4+a10等于多少?
我要的是简便算法,不是那些长篇计算

设公差为d,则a3=a1+2d,a9=a1+8d,a9/a3=a3/a1,代入可得a1=d.于是(a1+a3+a9)/(a2+a4+a10)=(3a1+10d)/(3a1+13d)=13/16.要是觉得还不简便,那就凑吧,直接设a[n]=n,正好符合条件,a1+a3+a9/a2+a4+a10=(1+3+9)/(2+4+10)=13/1...