一个长方形宽增加3厘米,则面积增加30平方厘米,这时恰好是一个正方形,求原来长方形的周长和面积.

问题描述:

一个长方形宽增加3厘米,则面积增加30平方厘米,这时恰好是一个正方形,求原来长方形的周长和面积.

30/3=10(厘米)
10-3=7(厘米)
面积:10*7=70(平方厘米)
周长:(10+7)*2
=17*2
=34(厘米)

设长为x宽为y
x=y+3
xy+30=x平方
解得x=10
y=7
c=2x+2y=34
s=70

因为一个长方形宽增加3厘米,则面积增加30平方厘米,可知原长方形长L=30÷3=10(cm),又因为宽增加3cm恰好为正方形,可知原长方形宽M=10-3=7(cm),所以原长方形周长=(10+7)×2=34(cm),面积=10×7=70(cm^2)