设a>0,f(x)=x^2+a|lnx-1|,当x≥1时,求函数最小值

问题描述:

设a>0,f(x)=x^2+a|lnx-1|,当x≥1时,求函数最小值

(1)当 1≤x≤e时,0≤lnx≤1,lnx -1≤0,
所以 f(x)=x^2+a|lnx-1|=f(x)=x^2-alnx+a,
f‘(x)=2x-a/x=(2x²-a)/x,
如果a<2,则f'(x)>0,即f(x)在1≤x≤e上为增函数,f(x)min=f(1)=1;
如果2≤a≤2e²时,在1≤x<√(a/2) f’(x)<0,在 √(a/2) <x≤e f’(x)>0,
所以 f(x)min=f(√(a/2) )=3a/2+a/2*ln(a/2);
如果a>2e²时,f'(x)<0,即f(x)在1≤x≤e上为减函数,f(x)min=f(e)=e²;
函数的最小值为 f(1)=1;
(2)当x>e时,f(x)=x^2+a|lnx-1|=f(x)=x^2+alnx-a,
f‘(x)=2x+a/x>0,即f(x)在x>e上为增函数,
f(x)min=f(e)=e²;
综上,有
如果a<2,f(x)的最小值为1;
如果2≤a≤2e²,f(x)的最小值为3a/2+a/2*ln(a/2);
如果a>2e²,f(x)的最小值为e² .