已知Sn是数列an的前n项和,an的通向公式为2n 设Tn=(Sn/Sn+1) +( Sn+1/Sn)-2

问题描述:

已知Sn是数列an的前n项和,an的通向公式为2n 设Tn=(Sn/Sn+1) +( Sn+1/Sn)-2
设数列{an}的前项和为sn,a1=2,点(Sn+1,Sn)在直线(X/n+1)-(y/n)=1(n是正整数,
1.求an的通项公式;
2 .设Tn=(Sn/Sn+1) +( Sn+1/Sn)-2 求证 4/3≤T1+T2+T3+……Tn<3
第一问我做出来是an=2n;求证第二问;
先谢过各位答君.

Tn=n/(n+2)+(n+2)/n-2=4/n(n+2)=2[1/n-1/(n+2)]于是T1+T2+T3+……Tn=2[1-1/3+1/2-1/4+1/3-1/5+……+1/(n-1)-1/(n+1)+1/n-1/(n+2)]=2[1+1/2-1/(n+1)-1/(n+2)]<2*(3/2)=3≥4/3很好证,Tn=n/(n+2)+(n+2)/n-...