一物体以20m/s的速度自倾角37°的斜面底端上斜面,2.5s后速度为0,求物体与斜面间的动摩擦因数
问题描述:
一物体以20m/s的速度自倾角37°的斜面底端上斜面,2.5s后速度为0,求物体与斜面间的动摩擦因数
若它又从斜面上滑下来,求它到达斜面底端时所需的时间
答
此物体受重力,斜面对物体的支持力和摩擦力.重力的一个分力要与支持力平衡,
即F支=mgcosα.重力的另一个分力和摩擦力为物体的阻力.由F=ma,得:
mgsinα+μmgcosα=ma.Vo+at=Vt.20m/s+a×2.5s=0,解得a=-8m/s².
把α=37°,a=8m/s²代入,得0.6mg+0.8μmg=8m,若重力加速度取10m/s²,
等式两边同时约去m,6+8μ=8,μ=0.25.
若它又从斜面上滑下来,此时物体所受摩擦力沿斜面向上,
得 mgsinα-μmgcosα=ma.解得a=4m/s².
Vt²-Vo²=2as.0-400=2×(-8)s,解得物体滑上斜面的距离s=25m.
S=Vot+(1/2)at²,25m=0+(1/2)×4m/s²×t²,t=(5√2)/2秒.
即它从斜面到达斜面底端时所需的时间为(5√2)/2秒.
它经历的总时间为(5√2+5)/2秒.