如图,在Rt△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC于E点,连接BE. (1)若BE是△DEC的外接圆⊙O的切线,求∠C的大小; (2)当AB=1,BC=2时,求△DEC外接圆的半径.

问题描述:

如图,在Rt△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC于E点,连接BE.
(1)若BE是△DEC的外接圆⊙O的切线,求∠C的大小;
(2)当AB=1,BC=2时,求△DEC外接圆的半径.

(1)∵DE垂直平分AC,∴∠DEC=90°,∴DC为△DEC外接圆的直径,∴DC的中点O即为圆心;连接OE,又知BE是圆O的切线,∴∠EBO+∠BOE=90°;在Rt△ABC中,E是斜边AC的中点,∴BE=EC,∴∠EBC=∠C;又∵OE=OC,∴∠BOE=2...