如图,△ADE是由△ABC绕点A顺时针旋转得到的,若∠DAC=80°,∠BAE=30°,求∠BAC的度数
问题描述:
如图,△ADE是由△ABC绕点A顺时针旋转得到的,若∠DAC=80°,∠BAE=30°,求∠BAC的度数
答
∵∠C+∠CAB+∠EAD+∠B+∠D+∠E=360°
∵∠B+∠E=110°
∴∠C+∠CAB+∠EAD+∠D=360°-∠B-∠E=360°-110°=250°
∵△ADE是△ABC旋转变换后所得的像
∴∠C=∠E ∠B=∠D ∠CAB=DAE=1/2(∠CAB+∠DAE)
∴∠C+∠D=∠B+∠E=110°
∵∠CAB+∠EAD=250°-(∠C-∠D)=250°-110°=140°
∴∠CAB=1/2(∠CAB+∠DAE)=1/2×140°=70°
∵∠BAE=30°
∴∠CAE=∠CAB+∠BAE=70°+30°=100°