如图所示,等腰三角形ABC的底边长为8cm,腰长为5cm,一动点P在底边上从B向C以0.25m/s的速度运动,当点P运动到PA与腰垂直的位置时,求点P运动的时间.

问题描述:

如图所示,等腰三角形ABC的底边长为8cm,腰长为5cm,一动点P在底边上从B向C以0.25m/s的速度运动,当点P运动到PA与腰垂直的位置时,求点P运动的时间.

如图,作AD⊥BC,交BC于点D,
∵BC=8cm,
∴BD=CD=

1
2
BC=4cm,
∵AB=5cm,
∴AD=3cm,
分两种情况:当点P运动t秒后有PA⊥AC时,
∵AP2=PD2+AD2=PC2-AC2
∴PD2+AD2=PC2-AC2
∴PD2+32=(PD+4)2-52
∴PD=2.25cm,
∴BP=4-2.25=1.75=0.25t,
∴t=7秒,
当点P运动t秒后有PA⊥AB时,同理可证得PD=2.25,
∴BP=4+2.25=6.25=0.25t,
∴t=25秒,
∴点P运动的时间为7秒或25秒.