计算曲面积分 ∫∫(x^2+y^2+z^2)^-0.5ds,其中 ∑是球面x^2+y^2+z^2=a^2(z>0)
问题描述:
计算曲面积分 ∫∫(x^2+y^2+z^2)^-0.5ds,其中 ∑是球面x^2+y^2+z^2=a^2(z>0)
答
∫∫(x^2+y^2+z^2)^-0.5ds
=∫∫ads
=a*(2πa²)
=2πa³
曲面积分可以用曲面方程化简被积函数;被积函数为1,积分结果为曲面面积;球表面积为4πa²,本题由于z>0,因此只是半个球,所以是2πa²曲面积分不可以直接带入曲面方程吧可以。 二重积分和三重积分不行,曲线曲面都可以。是这样啊,谢谢!您能不能帮我解答一下这道题?常数项级数∑(n=1-∞)(n*2^n)^-1的和为?∑(n=1→∞) 1/(n*2^n) 先计算 s(x)=∑(n=1→∞) x^n/(n*2^n) =∑(n=1→∞) (1/n)(x/2)^n 求导:s'(x)=(1/2)∑(n=1→∞) (x/2)^(n-1) =(1/2)∑(n=0→∞) (x/2)^n =(1/2)[1/(1-(x/2))] =1/(2-x) 两边从0到x积分得: s(x)-s(0)=-ln(2-x)+ln2 由于s(0)=0 因此s(x)=-ln(2-x)+ln2 将x=1代入得:s(1)=ln2 因此所求结果为ln2