如图,BD、CE是△ABC的高,D、E为垂足,在BD上截取BF,使BF=AC,在CE的延长线取一点G,使CG=AB.试说明:①AF=AG;②AG⊥AF.

问题描述:

如图,BD、CE是△ABC的高,D、E为垂足,在BD上截取BF,使BF=AC,在CE的延长线取一点G,使CG=AB.试说明:①AF=AG;②AG⊥AF.

①∵BD、CE是△ABC的高,
∴∠ADB=∠AEC=90°,
∴∠ABF+∠BAD=90°∠GCA+∠BAD=90°,
∴∠ABF=∠GCA,
在△ABF和△GCA中,

AB=CG
∠ABF=∠GCA
BF=AC

∴△ABF≌△GCA(SAS),
∴AF=AG.
②∵△ABF≌△GCA,
∴∠GAC=∠AFB,
∵∠AFB=∠ADB+∠FAD,∠GAC=∠GAF+∠FAD,
∴∠GAF=∠ADF,
∵∠ADF=90°,
∴∠GAF=90°,
∴AG⊥AF.