设函数f(x)=1/3ax^3+bx^2+cx(a
问题描述:
设函数f(x)=1/3ax^3+bx^2+cx(a
答
.(1)证明:∵ f′(x)=ax2+2bx+c
∴f′(1)=a+2b+c=0
又∵a<b<c,∴a<b<0,∴0≤b/a<1
(2)由(1)可知,f′(x)的图像开口向下,(1,0)为与x轴得一个交点.
∵a+2b+c=0…①
am^2+2bm+c=-a …②,
①-②,得:b/a=m2/(2-2m),
∵1+X^2=-b/a
∴x^2=m2/(2m-2)-1
∴|s-t|≤1-x2=2-m/(2m-2)
(3)依题意得:ak^2+2bk+c+a<0恒成立
又∵am^2+2bm+c+a=0图像对称轴为-b/2a,
∴a[(2m-m2)/(2m-2)]2+2b[(2m-m2)/(2m-2)]+a+c=0
∴k<(2m-m2)/(2m-2)或k>m