称满足A^2=A 的矩阵A为幂等矩阵.证明:任意m*n矩阵A都可分解为可逆矩阵P和幂等矩阵Q的乘积.
问题描述:
称满足A^2=A 的矩阵A为幂等矩阵.证明:任意m*n矩阵A都可分解为可逆矩阵P和幂等矩阵Q的乘积.
答
这其实是个满秩分解的矩阵问题
根据幂等矩阵的定理,若A为幂等矩阵,则存在一个可逆矩阵P使得(P-1)AP=E 0
0 0
E为单位矩阵,(P-1)为P的逆.
则A=P E 0 (P-1)
0 0
令Q=E 0
0 0
因为对角矩阵是幂等矩阵.
如果想知道详细证明过程把你的邮箱告诉我,我写给你,这上面不好弄