设A是数域F上一个n阶方阵,且A^2=A(A为幂等矩阵)证明(1)I+A可逆,并求I+A的逆 (2)秩(A)+秩(I+A)=n (3)A一定可对角化

问题描述:

设A是数域F上一个n阶方阵,且A^2=A(A为幂等矩阵)
证明(1)I+A可逆,并求I+A的逆 (2)秩(A)+秩(I+A)=n (3)A一定可对角化