在四边形ABCD中,AC,BD相交于点O,且AC=BD,E,F分别是AD,BC的中点,EF分别交BD,AC与点M,N,求证OM=ON图凑合着画图自己画好吗

问题描述:

在四边形ABCD中,AC,BD相交于点O,且AC=BD,E,F分别是AD,BC的中点,EF分别交BD,AC与点M,N,求证OM=ON
图凑合着画
图自己画好吗

给个图啊

在四边形ABCD中,AC,BD相交于点O,且AC=BD,E,F分别是AD,BC的中点,EF分别交BD,AC与点M,N,求证OM=ON
证明:设Q、R分别是AB、CD中点,连接EQ、QF、FR、RE,
FR与AC交点为S,RE与BD交点为T
因为E、Q、F、R分别是AD、AB、BC、CD中点,
所以QE‖BD且等于1/2BD,FR‖BD且等于1/2BD,
QF‖AC且等于1/2AC,ER‖AC且等于1/2AC
又因为AC=BD,所以EQ=QF=FR=RE 且QE‖RF,QF‖ER
所以EQFR是平行四边行且是菱形
得出:EF为∠QER和∠QFR平分线,∠QEF=∠FER,∠QFE=∠RFE,
因为QF‖ER,所以∠EFQ=∠FER,得∠EFR=∠FER
因为AC‖ER,所以∠BOA=∠BTE,
因为BD‖RF,所以∠FSA=∠BOA,得∠FSA=∠BTE,
在三角形EMT与三角形FNS中,
∠MET=∠FER=∠EFR=∠NFS,
∠ETM=∠ETB=∠ASF=∠NSF,
由三角形内角和,得出∠EMT=∠FNS,
因为∠EMT与∠OMN是对顶角,∠FNS与∠ONM是对顶角,
所以在三角形NOM中∠OMN=∠ONM,
三角形NOM为等腰三角形,得出OM=ON