如图1,点C将线段AB分成两部分,如果AC/AB=BC/AC,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义

问题描述:

如图1,点C将线段AB分成两部分,如果

AC
AB
BC
AC
,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果
S1
S
S2
S1
,那么称直线l为该图形的黄金分割线.

(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?
(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?
(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.
(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD的黄金分割线,使它不经过平行四边形ABCD各边黄金分割点.

(1)直线CD是△ABC的黄金分割线.理由如下:
设△ABC的边AB上的高为h.
S△ADC=

1
2
AD•h,S△BDC=
1
2
BD•h
S△ABC=
1
2
AB•h

S△ADC
S△ABC
=
AD
AB
S△BDC
S△ADC
=
BD
AD

又∵点D为边AB的黄金分割点,
AD
AB
=
BD
AD

S△ADC
S△ABC
=
S△BDC
S△ADC

故直线CD是△ABC的黄金分割线.
(2)∵三角形的中线将三角形分成面积相等的两部分,
s1=s2=
1
2
s
,即
s1
s
s2
s1

故三角形的中线不可能是该三角形的黄金分割线.
(3)∵DF∥CE,
∴△DFC和△DFE的公共边DF上的高也相等,
∴S△DFC=S△DFE
∴S△ADC=S△ADF+S△DFC=S△ADF+S△DFE=S△AEF,S△BDC=S四边形BEFC
又∵
S△ADC
S△ABC
=
S△BDC
S△ADC

S△AEF
S△ABC
=
S四边形BEFC
S△AEF

因此,直线EF也是△ABC的黄金分割线.(7分)
(4)画法不惟一,现提供两种画法;
画法一:如答图1,取EF的中点G,再过点G作一条直线分别交AB,DC于M,N点,则直线MN就是平行四边形ABCD的黄金分割线.
画法二:如答图2,在DF上取一点N,连接EN,再过点F作FM∥NE交AB于点M,连接MN,则直线MN就是平行四边形ABCD的黄金分割线.

(9分)