等差数列{an}的各项均为正整数,a1=3,前n项和为Sn,等比数列{bn}中,b1=1,且b2S2=64,{ban}是公比为64的等比数列.(1)求{an}与{bn};(2)证明:1/S1+1/S2+…+1/Sn<3/4.
问题描述:
等差数列{an}的各项均为正整数,a1=3,前n项和为Sn,等比数列{bn}中,b1=1,且b2S2=64,{ban}是公比为64的等比数列.
(1)求{an}与{bn};
(2)证明:
+1 S1
+…+1 S2
<1 Sn
.3 4
答
(1)设{an}的公差为d,{bn}的公比为q,则d为正整数,an=3+(n-1)d,bn=qn-1
依题意有
=ban+1 ban
=qd=64,且S2b2=(6+d)q=64,①q2+nd q2+(n-1)d
由(6+d)q=64知q为正有理数,故d为6的因子1,2,3,6之一,
解①得d=2,q=8
故an=3+2(n-1)=2n+1,bn=8n-1
(2)Sn=3+5+…+(2n+1)=n(n+2)
∴
+1 S1
+…+1 S2
=1 Sn
+1 1×3
+1 2×4
+…+1 3×5
=1 n(n+2)
(1-1 2
+1 3
-1 2
+1 4
-1 3
+…+1 5
-1 n
)=1 n+2
(1+1 2
-1 2
-1 n+1
)<1 n+2
.3 4