已知关于X的方程X²-(3m-1)X+2m²-2=0 (1)求证:无论m取何实数值,方程总有实数根
问题描述:
已知关于X的方程X²-(3m-1)X+2m²-2=0 (1)求证:无论m取何实数值,方程总有实数根
(2)若等腰△ABC的其中一边a=5,另两边b,c恰好是此方程的两根,求△ABC的周长
答
(1)证明:∵Δ=[-(3m-1)]²-4×1×(2m²-2)
=9m²-6m+1-8m²+8
=m²-6m+9
=(m-3)²≥0
∴无论m取何实数值,方程总有实数根.
①当a=5为底边时,b=c,则方程的两根相等,
∴Δ=(m-3)²=0
m=3
此时方程是x²-8x+16=0
解得:x1=x2=4
∴b=c=4
△ABC的周长是5+4+4=13.
②当a=5为腰长时,设b=a=5,
∵b是此方程的根,则将x=5代入方程X²-(3m-1)X+2m²-2=0 ,得
5²-5(3m-1)+2m²-2=0
解得:m1=7/2,m2=4
当m=7/2时,方程是x²-(19/2)x+(45/2)=0
∵b=5,c是方程的两根,
∴5+c=19/2
c=9/2
△ABC的周长是5+5+(9/2)=29/2.
当m=4时,方程是x²-11x+30=0
∵b=5,c是方程的两根,
∴5+c=11
c=6
△ABC的周长是5+5+6=16.
综上所述,△ABC的周长是13或29/2或16.