已知在三角形ABC中,向量m=(2cosC/2,-sin(A+B)),n=(cosC/2,2sin(A+B))且m垂直于n.,若a^2=b^2+1/2c^2,求sin(A-B)
问题描述:
已知在三角形ABC中,向量m=(2cosC/2,-sin(A+B)),n=(cosC/2,2sin(A+B))且m垂直于n.,若a^2=b^2+1/2c^2,求sin(A-B)
答
由向量m垂直于n得(2cosC/2,-sin(A+B))*(cosC/2,2sin(A+B))=0(cosC/2)^2=sin(A+B)^2=sinC^2(1+cosC)/2=1-(cosC)^2解得 cosC=1/2,C=60°由a^2=b^2+1/2c^2得c^2=2(a^2-b^2)( sinC)^2=2(( sinA)^2-( sinB)^2)( sinC)...