已知f(x)=2+log3x,x∈[1,9],求y=[f(x)]2+f(x2)的最大值及y取最大值时x的值.
问题描述:
已知f(x)=2+log3x,x∈[1,9],求y=[f(x)]2+f(x2)的最大值及y取最大值时x的值.
答
∵f(x)=2+log3x,x∈[1,9],
∴y=[f(x)]2+f(x2)=(2+log3x)2+(2+log3x2)
=(log3x)2+6log3x+6,令t=log3x
由题意可得
即1≤x≤3,则t∈[0,1]
1≤x≤9 1≤x2≤9
∴y=t2+6t+6=(t+3)2-3在[0,1]上单调递增
当t=1即x=3时,函数有最大值,ymax=13