已知抛物线y=ax平方+bx+c(a、b、c是常数,a≠0)的顶点为p(-2,4)与x轴交与A、B两点且△PAB的面积为8

问题描述:

已知抛物线y=ax平方+bx+c(a、b、c是常数,a≠0)的顶点为p(-2,4)与x轴交与A、B两点且△PAB的面积为8
求这条抛物线表达式 一点钟以前悬赏40

由题意知,0.5*4*AB=8,解得AB=4,而AB又关于x=-2对称,故抛物线与X轴的交点为-4或0,表达式可写为y=ax(x+4)=a(x+2)^2-4a,由此知,--4a=4,则a=-1,抛物线方程为y=-x^2-4