给定双曲线x2-y2/2=1 过点A(2,1)的直线与所给双曲线交于两点P1 P2 如果A点是弦P1P2的中点,求直线l的方程

问题描述:

给定双曲线x2-y2/2=1 过点A(2,1)的直线与所给双曲线交于两点P1 P2 如果A点是弦P1P2的中点,求直线l的方程
如题

设直线l的方程为y-1=k(x-2),y=kx-2k+1,代入双曲线方程得:
(2-k^2)x^2+(4k^2-2k)x-4k^2+4k-3=0.
设P1(x1,y1)、P2(x2,y2).
x1+x2=-(4k^2-2k)/(2-k^2).
点A这P1P2的中点,所以(x1+x2)/2=2,即x1+x2=4.
-(4k^2-2k)/(2-k^2)=4,解得:k=4.
直线l的方程为y=4(x-2)+1、y=4x-7.