设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是_.

问题描述:

设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是______.

∵当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,
∴函数图象过(1,0)点,即1+b+c=0①,
∵当1≤x≤3时,总有y≤0,
∴当x=3时,y=9+3b+c≤0②,
①②联立解得:c≥3.
故答案是:c≥3.