求数列,2的n次方分之2n减1的前n项和Sn,
问题描述:
求数列,2的n次方分之2n减1的前n项和Sn,
答
数列为:an=(2n-1)/2^n
2sn=1+3/2+5/4+7/8+9/16+...+(2n-1)/2^n-1
sn=2sn-sn=1+2(1/2+1/4+1/8+...+1/2^n-1)-(2n-1)/2^n
=1+2*(1/2-1/2^n)/(1-1/2)-(2n-1)/2^n
=3-(3+2n)/2^n