求圆x^2+y^2+4x-12y+39=0关于直线3x-4y-5=0的对称圆方程
问题描述:
求圆x^2+y^2+4x-12y+39=0关于直线3x-4y-5=0的对称圆方程
注意,直线方程里是减5.
答
x^2+y^2+4x-12y+39=0
化为标准方程
(x+2)^2+(y-6)^2=1
关于直线的对称圆,只需求圆心的对称点就行,半径不变.
即求点(-2,6)关于直线3x-4y-5=0的对称点.
对称点到直线的距离相等,连线的垂直直线.
设对称点为(a,b)
l-2*3-4*6-5l/5=l3a-4b-5l/5
35=l3a-4b-5l,3a-4b=-30(舍去,因为这是点(-2,6))或3a-4b=40
(b-6)/(a+2)=-4/3
4a+3b=10
所以可以求出a=32/5,b=-26/5
所以对称圆为
(x-32/5)^2+(y+26/5)^2=1